Unsymmetrically Tris-bridged [2.2.2]Cyclophanes. Synthesis of [2.2.2](1,2,4)(1,3,5)Cyclophane ${ }^{1}$

By Masao Nakazaki,* Koji Yamamoto, and Yasuhiro Miura
(Department of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan)

Summary $[2.2 .2](1,2,4)(1,3,5)$ Cyclophane (5) was synthesized, and its unusually strained and skew structure was supported by its u.v. and n.m.r. spectra.
[2.2.2](1,3,5)Cyclophane ${ }^{2}\left(D_{3 h}\right.$ symmetry), [2.2.2] $(1,2,4)-$ cyclophane ${ }^{3}$ (C_{s} symmetry), and $[2.2 .2 .2](1,2,4,5)$ cyclophane ${ }^{4}$ ($D_{2 h}$ symmetry) so far have been the only representatives of the highly strained cyclophanes which have two benzene rings held together with three or more ethano-
bridges. One notable feature of these compounds is the strong transannular interaction between their aromatic π-electron clouds as shown by their spectral and chemical properties.

We are interested in the syntheses and absolute configurations of dissymmetrically twisted cyclophanes, ${ }^{5}$ and we report the synthesis of $[2.2 .2](1,2,4)(1,3,5)$ cyclophane (5) ; a chiral compound (C_{1} symmetry) constructed from 1,3,5-trimethylbenzene and 1,2,4-trimethylbenzene units.

1,3,5-Tris(mercaptomethyl)benzene ${ }^{8}$ was prepared from 1,3,5-trimethoxycarbonyl benzene and converted into the sodium salt (1) which was refluxed in ethanol with $1,2,4$-tris(bromomethyl)benzene (2) \dagger to afford trithia[3.3.3](1,2,4)($1,3,5$) cyclophane (3),$\ddagger 40 \%$ yield, colourless prisms, m.p.
$200-201{ }^{\circ} \mathrm{C}$ (from benzene); u.v. $\lambda_{\max }$ (iso-octane) 255 nm ($\epsilon 5020$); n.m.r. $\left(\mathrm{CDCl}_{3}\right) \tau 2 \cdot 79-3 \cdot 60(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $4.21(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$, and $5.92-6.91\left(12 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$.

The trithiacyclophane (3) was treated with hydrogen peroxide to furnish the trisulphone (4), colourless powder, m.p. $>300^{\circ} \mathrm{C}$. Pyrolysis ($520^{\circ} \mathrm{C}, 1 \mathrm{~h}$) of (4) according to Staab's procedure, ${ }^{7}$ followed by silica gel chromatography and recrystallization from pentane gave $[2.2 .2](1,2,4)(1,3,5)$ cyclophane (5)§ (6.1% yield), colourless plates, m.p. $87-88^{\circ} \mathrm{C}$; u.v. $\lambda_{\max }$ (iso-octane) 235 (shoulder, $\epsilon 10,030$) and $300 \mathrm{~nm}(380)$; n.m.r. $\left(\mathrm{CDCl}_{3}\right) \tau 3 \cdot 20(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 3 \cdot 18$ and $3.40\left(2 \mathrm{H}, \mathrm{AB}\right.$ q, $\left.J_{\mathrm{AB}} 8 \mathrm{~Hz}, \mathrm{ArH}\right), 3.68(1 \mathrm{H}, \mathrm{t}, \mathrm{ArH})$, $4 \cdot 12(1 \mathrm{H}, \mathrm{d}, \mathrm{ArH}), 4 \cdot 96(1 \mathrm{H}, \mathrm{t}, \mathrm{ArH})$, and $6.48-8.36(12 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}_{2}$). The remarkable upfield shift of one aromatic proton to $\tau 4.96$ clearly indicates a skew geometry (C_{1} symmetry) of the molecule in which the corresponding atoms of the two benzene rings are not directly opposite each other. This highly strained skew structure shows an unusual u.v. spectrum and a marked tendency to resinify at room temperature.
(Received, 30th December 1976; Com. 1413.)
\dagger B.p. $64-65^{\circ} \mathrm{C}$, prepared from 1,2,4-trimethoxycarbonylbenzene by LiAlH_{4} reduction followed by PBr_{3} treatment.
\ddagger The structural formulae (3), (4), and (5) respectively represent one of their possible enantiomers.
§ Satisfactory elemental analysis and mass spectral data have been obtained for all new compounds.
${ }^{1}$ The nomenclature used is that proposed by F. Vögtle and P. Neumann, Tetrahedron, 1970, 26, 5847.
${ }^{2}$ V. Boekelheide and R. A. Hollins, J. Amer. Chem. Soc., 1970, 92, 3512; 1973, 95, 3201.
${ }^{3}$ D. J. Cram and E. A. Truesdale, J. Amer. Chem. Soc., 1973, 95, 5825.
${ }^{4}$ V. Boekelheide and R. Gray, Angew. Chem. Internat. Edn., 1975, 14, 107.
${ }^{5}$ M. Nakazaki, K. Yamamoto, and S. Tanaka, Tetrahedron Letters, 1971, 341 ; M. Nakazaki, K. Yamamoto, and S. Tanaka, J.C.S. Chem. Comm., 1972, 433; M. Nakazaki, K. Yamamoto, and M. Ito, ibid., p. 434; K. Yamamoto and M. Nakazaki, Chem. Letters, 1974, 1051.
${ }^{6}$ F. Vögtle, Annalen, 1970, 735, 193.
${ }^{7}$ M. Haenel and H. A. Staab, Tetrahedron Letters, 1970, 3585; Chem. Ber., 1973, 106, 2190.

